沈陽(yáng)有色金屬原料基礎(chǔ)知識(shí)
2022-03-15 來(lái)自: 沈陽(yáng)市中聯(lián)銅鋁業(yè)有限公司 瀏覽次數(shù):939
金屬材料是指金屬元素或以金屬元素為主構(gòu)成的具有金屬特性的材料的統(tǒng)稱(chēng)。包括純金屬、合金、金屬材料金屬間化合物和特種金屬材料等。(注:金屬氧化物(如氧化鋁)不屬于金屬材料。)
”
Vol.1
意義
人類(lèi)文明的發(fā)展和社會(huì)的進(jìn)步同金屬材料關(guān)系十分密切。繼石器時(shí)代之后出現(xiàn)的銅器時(shí)代、鐵器時(shí)代,均以金屬材料的應(yīng)用為其時(shí)代的顯著標(biāo)志。現(xiàn)代,種類(lèi)繁多的金屬材料已成為人類(lèi)社會(huì)發(fā)展的重要物質(zhì)基礎(chǔ)。
Vol.2
種類(lèi)
金屬材料通常分為黑色金屬、有色金屬和特種金屬材料。
(1)黑色金屬,又稱(chēng)鋼鐵材料,包括含鐵90%以上的工業(yè)純鐵,含碳2%-4%的鑄鐵,含碳小于2%的碳鋼,以及各種用途的結(jié)構(gòu)鋼、不銹鋼、耐熱鋼、高溫合金、不銹鋼、精密合金等。廣義的黑色金屬還包括鉻、錳及其合金。
(2)有色金屬,是指除鐵、鉻、錳以外的所有金屬及其合金,通常分為輕金屬、重金屬、貴金屬、半金屬、稀有金屬和稀土金屬等。有色合金的強(qiáng)度和硬度一般比純金屬高,并且電阻大、電阻溫度系數(shù)小。
(3)特種金屬材料,包括不同用途的結(jié)構(gòu)金屬材料和功能金屬材料。其中有通過(guò)快速冷凝工藝獲得的非晶態(tài)金屬材料,以及準(zhǔn)晶、微晶、納米晶金屬材料等;還有隱身、抗氫、超導(dǎo)、形狀記憶、耐磨、減振阻尼等特殊功能合金以及金屬基復(fù)合材料等。
Vol.3
性能
一般分為工藝性能和使用性能兩類(lèi)。所謂工藝性能是指機(jī)械零件在加工制造過(guò)程中,金屬材料在所定的冷、熱加工條件下表現(xiàn)出來(lái)的性能。金屬材料工藝性能的好壞,決定了它在制造過(guò)程中加工成形的適應(yīng)能力。由于加工條件不同,要求的工藝性能也就不同,如鑄造性能、可焊性、可鍛性、熱處理性能、切削加工性等。
所謂使用性能是指機(jī)械零件在使用條件下,金屬材料表現(xiàn)出來(lái)的性能,它包括力學(xué)性能、物理性能、化學(xué)性能等。金屬材料使用性能的好壞,決定了它的使用范圍與使用壽命。在機(jī)械制造業(yè)中,一般機(jī)械零件都是在常溫、常壓和非常強(qiáng)烈腐蝕性介質(zhì)中使用的,且在使用過(guò)程中各機(jī)械零件都將承受不同載荷的作用。金屬材料在載荷作用下抵抗破壞的性能,稱(chēng)為力學(xué)性能(過(guò)去也稱(chēng)為機(jī)械性能)。金屬材料的力學(xué)性能是零件的設(shè)計(jì)和選材時(shí)的主要依據(jù)。外加載荷性質(zhì)不同(例如拉伸、壓縮、扭轉(zhuǎn)、沖擊、循環(huán)載荷等),對(duì)金屬材料要求的力學(xué)性能也將不同。常用的力學(xué)性能包括:強(qiáng)度、塑性、硬度、沖擊韌性、多次沖擊抗力和疲勞極限等。
金屬材料特性
Vol.1
疲勞
許多機(jī)械零件和工程構(gòu)件,是承受交變載荷工作的。在交變載荷的作用下,雖然應(yīng)力水平低于材料的屈服極限,但經(jīng)過(guò)長(zhǎng)時(shí)間的應(yīng)力反復(fù)循環(huán)作用以后,也會(huì)發(fā)生突然脆性斷裂,這種現(xiàn)象叫做金屬材料的疲勞。金屬材料疲勞斷裂的特點(diǎn)是:
(1)載荷應(yīng)力是交變的;
(2)載荷的作用時(shí)間較長(zhǎng);
(3)斷裂是瞬時(shí)發(fā)生的;
(4)無(wú)論是塑性材料還是脆性材料,在疲勞斷裂區(qū)都是脆性的。所以,疲勞斷裂是工程上較常見(jiàn)、較危險(xiǎn)的斷裂形式。
金屬材料的疲勞現(xiàn)象,按條件不同可分為下列幾種:
#1
高周疲勞
指在低應(yīng)力(工作應(yīng)力低于材料的屈服極限,甚至低于彈性極限)條件下,應(yīng)力循環(huán)周數(shù)在100000以上的疲勞,它是較常見(jiàn)的一種疲勞破壞。高周疲勞一般簡(jiǎn)稱(chēng)為疲勞。
#2
低周疲勞
指在高應(yīng)力(工作應(yīng)力接近材料的屈服極限)或高應(yīng)變條件下,應(yīng)力循環(huán)周數(shù)在10000~100000以下的疲勞。由于交變的塑性應(yīng)變?cè)谶@種疲勞破壞中起主要作用,因而,也稱(chēng)為塑性疲勞或應(yīng)變疲勞。
#3
熱疲勞
指由于溫度變化所產(chǎn)生的熱應(yīng)力的反復(fù)作用,所造成的疲勞破壞。
#4
腐蝕疲勞
指機(jī)器部件在交變載荷和腐蝕介質(zhì)(如酸、堿、海水、活性氣體等)的共同作用下,所產(chǎn)生的疲勞破壞。
#5
接觸疲勞
這是指機(jī)器零件的接觸表面,在接觸應(yīng)力的反復(fù)作用下,出現(xiàn)麻點(diǎn)剝落或表面壓碎剝落,從而造成機(jī)件失效破壞。
Vol.2
塑性
塑性是指金屬材料在載荷外力的作用下,產(chǎn)生變形(塑性變形)而不被破壞的能力。金屬材料在受到拉伸時(shí),長(zhǎng)度和橫截面積都要發(fā)生變化,因此,金屬的塑性可以用長(zhǎng)度的伸長(zhǎng)(延伸率)和斷面的收縮(斷面收縮率)兩個(gè)指標(biāo)來(lái)衡量。
金屬材料的延伸率和斷面收縮率愈大,表示該材料的塑性愈好,即材料能承受較大的塑性變形而不破壞。一般把延伸率大于百分之五的金屬材料稱(chēng)為塑性材料(如低碳鋼等),而把延伸率小于百分之五的金屬材料稱(chēng)為脆性材料(如灰口鑄鐵等)。塑性好的材料,它能在較大的宏觀范圍內(nèi)產(chǎn)生塑性變形,并在塑性變形的同時(shí)使金屬材料因塑性變形而強(qiáng)化,從而提高材料的強(qiáng)度,保證了零件的使用。此外,塑性好的材料可以順利地進(jìn)行某些成型工藝加工,如沖壓、冷彎、冷拔、校直等。因此,選擇金屬材料作機(jī)械零件時(shí),須滿足特定的塑性指標(biāo)。
Vol.3
耐久性
建筑金屬腐蝕的主要形態(tài):
(1)均勻腐蝕。金屬表面的腐蝕使斷面均勻變薄。因此,常用年平均的厚度減損值作為腐蝕性能的指標(biāo)(腐蝕率)。鋼材在大氣中一般呈均勻腐蝕。
(2)孔蝕。金屬腐蝕呈點(diǎn)狀并形成深坑??孜g的產(chǎn)生與金屬的本性及其所處介質(zhì)有關(guān)。在含有氯鹽的介質(zhì)中易發(fā)生孔蝕??孜g常用較大孔深作為評(píng)定指標(biāo)。管道的腐蝕多考慮孔蝕問(wèn)題。
(3)電偶腐蝕。不同金屬的接觸處,因所具不同電位而產(chǎn)生的腐蝕。
(4)縫隙腐蝕。金屬表面在縫隙或其他隱蔽區(qū)域常發(fā)生由于不同部位間介質(zhì)的組分和濃度的差異所引起的局部腐蝕。
(5)應(yīng)力腐蝕。在腐蝕介質(zhì)和較高拉應(yīng)力共同作用下,金屬表面產(chǎn)生腐蝕并向內(nèi)擴(kuò)展成微裂紋,常導(dǎo)致突然破斷。混凝土中的強(qiáng)度高鋼筋(鋼絲)可能發(fā)生這種破壞。
Vol.4
硬度
硬度表示材料抵抗硬物體壓入其表面的能力。它是金屬材料的重要性能指標(biāo)之一。一般硬度越高,耐磨性越好。常用的硬度指標(biāo)有布氏硬度、洛氏硬度和維氏硬度。
布氏硬度(HB):以特定的載荷(一般3000kg)把特定大?。ㄖ睆揭话銥?0mm)的淬硬鋼球壓入材料表面,保持一段時(shí)間,去載后,負(fù)荷與其壓痕面積之比值,即為布氏硬度值(HB),單位為公斤力/mm2 (N/mm2)。
洛氏硬度(HR):當(dāng)HB>450或者試樣過(guò)小時(shí),不能采用布氏硬度試驗(yàn)而改用洛氏硬度計(jì)量。它是用一個(gè)頂角120°的金剛石圓錐體或直徑為1.59、3.18mm的鋼球,在特定載荷下壓入被測(cè)材料表面,由壓痕的深度求出材料的硬度。根據(jù)試驗(yàn)材料硬度的不同,可采用不同的壓頭和總試驗(yàn)壓力組成幾種不同的洛氏硬度標(biāo)尺,每一種標(biāo)尺用一個(gè)字母在洛氏硬度符號(hào)HR后面加以注明。常用的洛氏硬度標(biāo)尺是A,B,C三種(HRA、HRB、HRC)。其中C標(biāo)尺應(yīng)用較為廣泛。
HRA:是采用60kg載荷鉆石錐壓入器求得的硬度,用于硬度極高的材料(如硬質(zhì)合金等)。
HRB:是采用100kg載荷和直徑1.58mm淬硬的鋼球,求得的硬度,用于硬度較低的材料(如退火鋼、鑄鐵等)。
HRC:是采用150kg載荷和鉆石錐壓入器求得的硬度,用于硬度很高的材料(如淬火鋼等)。
維氏硬度(HV):以120kg以?xún)?nèi)的載荷和頂角為136°的金剛石方形錐壓入器壓入材料表面,用材料壓痕凹坑的表面積除以載荷值,即為維氏硬度值(HV)。硬度試驗(yàn)是機(jī)械性能試驗(yàn)中較簡(jiǎn)單易行的一種試驗(yàn)方法。為了能用硬度試驗(yàn)代替某些機(jī)械性能試驗(yàn),生產(chǎn)上需要一個(gè)比較準(zhǔn)確的硬度和強(qiáng)度的換算關(guān)系。實(shí)踐證明,金屬材料的各種硬度值之間,硬度值與強(qiáng)度值之間具有近似的相應(yīng)關(guān)系。因?yàn)橛捕戎凳怯善鹗妓苄宰冃慰沽屠^續(xù)塑性變形抗力決定的,材料的強(qiáng)度越高,塑性變形抗力越高,硬度值也就越高。
金屬材料的性能
金屬材料的性能決定著材料的適用范圍及應(yīng)用的合理性。金屬材料的性能主要分為四個(gè)方面,即:力學(xué)性能、化學(xué)性能、物理性能、工藝性能。
Vol.1
力學(xué)性能
應(yīng)力:物體內(nèi)部單位截面積上承受的力稱(chēng)為應(yīng)力。由外力作用引起的應(yīng)力稱(chēng)為工作應(yīng)力,在無(wú)外力作用條件下平衡于物體內(nèi)部的應(yīng)力稱(chēng)為內(nèi)應(yīng)力(例如組織應(yīng)力、熱應(yīng)力、加工過(guò)程結(jié)束后留存下來(lái)的殘余應(yīng)力)。
力學(xué)性能:金屬在特定溫度條件下承受外力(載荷)作用時(shí),抵抗變形和斷裂的能力稱(chēng)為金屬材料的機(jī)械性能(也稱(chēng)為力學(xué)性能)。金屬材料承受的載荷有多種形式,它可以是靜態(tài)載荷,也可以是動(dòng)態(tài)載荷,包括單獨(dú)或同時(shí)承受的拉伸應(yīng)力、壓應(yīng)力、彎曲應(yīng)力、剪切應(yīng)力、扭轉(zhuǎn)應(yīng)力,以及摩擦、振動(dòng)、沖擊等等,因此衡量金屬材料機(jī)械性能的指標(biāo)主要有以下幾項(xiàng)。
1.1
強(qiáng)度
這是表征材料在外力作用下抵抗變形和破壞的較大能力,可分為抗拉強(qiáng)度極限(σb)、抗彎強(qiáng)度極限(σbb)、抗壓強(qiáng)度極限(σbc)等。由于金屬材料在外力作用下從變形到破壞有特定的規(guī)律可循,因而通常采用拉伸試驗(yàn)進(jìn)行測(cè)定,即把金屬材料制成特定規(guī)格的試樣,在拉伸試驗(yàn)機(jī)上進(jìn)行拉伸,直至試樣斷裂,測(cè)定的強(qiáng)度指標(biāo)主要有:
(1)強(qiáng)度極限:材料在外力作用下能抵抗斷裂的較大應(yīng)力,一般指拉力作用下的抗拉強(qiáng)度極限,以σb表示,如拉伸試驗(yàn)曲線圖中較高點(diǎn)b對(duì)應(yīng)的強(qiáng)度極限,常用單位為兆帕(MPa),換算關(guān)系有:1MPa=1N/m2=(9.8)-1kgf/mm2或1kgf/mm2=9.8MPa。
(2)屈服強(qiáng)度極限:金屬材料試樣承受的外力超過(guò)材料的彈性極時(shí),雖然應(yīng)力不再增加,但是試樣仍發(fā)生明顯的塑性變形,這種現(xiàn)象稱(chēng)為屈服,即材料承受外力到特定程度時(shí),其變形不再與外力成正比而產(chǎn)生明顯的塑性變形。產(chǎn)生屈服時(shí)的應(yīng)力稱(chēng)為屈服強(qiáng)度極限,用σs表示,相應(yīng)于拉伸試驗(yàn)曲線圖中的S點(diǎn)稱(chēng)為屈服點(diǎn)。對(duì)于塑性高的材料,在拉伸曲線上會(huì)出現(xiàn)明顯的屈服點(diǎn),而對(duì)于低塑性材料則沒(méi)有明顯的屈服點(diǎn),從而難以根據(jù)屈服點(diǎn)的外力求出屈服極限。因此,在拉伸試驗(yàn)方法中,通常規(guī)定試樣上的標(biāo)距長(zhǎng)度產(chǎn)生0.2%塑性變形時(shí)的應(yīng)力作為條件屈服極限,用σ0.2表示。屈服極限指標(biāo)可用于要求零件在工作中不產(chǎn)生明顯塑性變形的設(shè)計(jì)依據(jù)。但是對(duì)于一些重要零件還考慮要求屈強(qiáng)比(即σs/σb)要小,以提高其可靠性,不過(guò)此時(shí)材料的利用率也較低了。
(3)彈性極限:材料在外力作用下將產(chǎn)生變形,但是去除外力后仍能恢復(fù)原狀的能力稱(chēng)為彈性。金屬材料能保持彈性變形的較大應(yīng)力即為彈性極限,相應(yīng)于拉伸試驗(yàn)曲線圖中的e點(diǎn),以σe表示,單位為兆帕(MPa):σe=Pe/Fo式中Pe為保持彈性時(shí)的較大外力(或者說(shuō)材料較大彈性變形時(shí)的載荷)。
(4)彈性模數(shù):這是材料在彈性極限范圍內(nèi)的應(yīng)力σ與應(yīng)變δ(與應(yīng)力相對(duì)應(yīng)的單位變形量)之比,用E表示,單位兆帕(MPa):E=σ/δ=tgα。式中α為拉伸試驗(yàn)曲線上o-e線與水平軸o-x的夾角。彈性模數(shù)是反映金屬材料剛性的指標(biāo)(金屬材料受力時(shí)抵抗彈性變形的能力稱(chēng)為剛性)。
1.2
塑性
金屬材料在外力作用下產(chǎn)生長(zhǎng)久變形而不破壞的較大能力稱(chēng)為塑性,通常以拉伸試驗(yàn)時(shí)的試樣標(biāo)距長(zhǎng)度延伸率δ(%)和試樣斷面收縮率ψ(%)延伸率δ=[(L1-L0)/L0]x100%,這是拉伸試驗(yàn)時(shí)試樣拉斷后將試樣斷口對(duì)合起來(lái)后的標(biāo)距長(zhǎng)度L1與試樣原始標(biāo)距長(zhǎng)度L0之差(增長(zhǎng)量)與L0之比。在實(shí)際試驗(yàn)時(shí),同一材料但是不同規(guī)格(直徑、截面形狀-例如方形、圓形、矩形以及標(biāo)距長(zhǎng)度)的拉伸試樣測(cè)得的延伸率會(huì)有不同,因此一般需要特別加注,例如較常用的圓截面試樣,其初始標(biāo)距長(zhǎng)度為試樣直徑5倍時(shí)測(cè)得的延伸率表示為δ5,而初始標(biāo)距長(zhǎng)度為試樣直徑10倍時(shí)測(cè)得的延伸率則表示為δ10。斷面收縮率ψ=[(F0-F1)/F0]x100%,這是拉伸試驗(yàn)時(shí)試樣拉斷后原橫截面積F0與斷口細(xì)頸處較小截面積F1之差(斷面縮減量)與F0之比。實(shí)用中對(duì)于較常用的圓截面試樣通??赏ㄟ^(guò)直徑測(cè)量進(jìn)行計(jì)算:ψ=[1-(D1/D0)2]x100%,式中:D0-試樣原直徑;D1-試樣拉斷后斷口細(xì)頸處較小直徑。δ與ψ值越大,表明材料的塑性越好。
1.3
韌性
金屬材料在沖擊載荷作用下抵抗破壞的能力稱(chēng)為韌性。通常采用沖擊試驗(yàn),即用特定尺寸和形狀的金屬試樣在規(guī)定類(lèi)型的沖擊試驗(yàn)機(jī)上承受沖擊載荷而折斷時(shí),斷口上單位橫截面積上所消耗的沖擊功表征材料的韌性:αk=Ak/F。單位J/cm2或Kg·m/cm2,1Kg·m/cm2=9.8J/cm2。αk稱(chēng)作金屬材料的沖擊韌性,Ak為沖擊功,F(xiàn)為斷口的原始截面積。
1.4
疲勞性能
疲勞強(qiáng)度極限金屬材料在長(zhǎng)期的反復(fù)應(yīng)力作用或交變應(yīng)力作用下(應(yīng)力一般均小于屈服極限強(qiáng)度σs),未經(jīng)顯著變形就發(fā)生斷裂的現(xiàn)象稱(chēng)為疲勞破壞或疲勞斷裂,這是由于多種原因使得零件表面的局部造成大于σs甚至大于σb的應(yīng)力(應(yīng)力集中),使該局部發(fā)生塑性變形或微裂紋,隨著反復(fù)交變應(yīng)力作用次數(shù)的增加,使裂紋逐漸擴(kuò)展加深(裂紋處應(yīng)力集中)導(dǎo)致該局部處承受應(yīng)力的實(shí)際截面積減小,直至局部應(yīng)力大于σb而產(chǎn)生斷裂。在實(shí)際應(yīng)用中,一般把試樣在重復(fù)或交變應(yīng)力(拉應(yīng)力、壓應(yīng)力、彎曲或扭轉(zhuǎn)應(yīng)力等)作用下,在規(guī)定的周期數(shù)內(nèi)(一般對(duì)鋼取106~107次,對(duì)有色金屬取108次)不發(fā)生斷裂所能承受的較大應(yīng)力作為疲勞強(qiáng)度極限,用σ-1表示,單位MPa。
除了上述幾種較常用的力學(xué)性能指標(biāo)外,對(duì)一些要求特別嚴(yán)格的材料,例如航空航天以及核工業(yè)、電廠等使用的金屬材料,還會(huì)要求下述一些力學(xué)性能指標(biāo)。
蠕變極限:在特定溫度和恒定拉伸載荷下,材料隨時(shí)間緩慢產(chǎn)生塑性變形的現(xiàn)象稱(chēng)為蠕變。通常采用高溫拉伸蠕變?cè)囼?yàn),即在恒定溫度和恒定拉伸載荷下,試樣在規(guī)定時(shí)間內(nèi)的蠕變伸長(zhǎng)率(總伸長(zhǎng)或殘余伸長(zhǎng))或者在蠕變伸長(zhǎng)速度相對(duì)恒定的階段,蠕變速度不超過(guò)某規(guī)定值時(shí)的較大應(yīng)力,作為蠕變極限,以表示,單位MPa,式中τ為試驗(yàn)持續(xù)時(shí)間,t為溫度,δ為伸長(zhǎng)率,σ為應(yīng)力;或者以表示,V為蠕變速度。
高溫拉伸長(zhǎng)久強(qiáng)度極限:試樣在恒定溫度和恒定拉伸載荷作用下,達(dá)到規(guī)定的持續(xù)時(shí)間而不斷裂的較大應(yīng)力。
金屬缺口敏感性系數(shù):以Kτ表示在持續(xù)時(shí)間相同(高溫拉伸長(zhǎng)久試驗(yàn))時(shí),有缺口的試樣與無(wú)缺口的光滑試樣的應(yīng)力之比。
抗熱性:在高溫下材料對(duì)機(jī)械載荷的抗力。
Vol.2
化學(xué)性能
金屬與其他物質(zhì)引起化學(xué)反應(yīng)的特性稱(chēng)為金屬的化學(xué)性能。在實(shí)際應(yīng)用中主要考慮金屬的抗蝕性、抗氧化性(又稱(chēng)作氧化抗力,這是特別指金屬在高溫時(shí)對(duì)氧化作用的抵抗能力或者說(shuō)穩(wěn)定性),以及不同金屬之間、金屬與非金屬之間形成的化合物對(duì)機(jī)械性能的影響等等。在金屬的化學(xué)性能中,特別是抗蝕性對(duì)金屬的腐蝕疲勞損傷有著重大的意義。
Vol.3
物理性能
金屬的物理性能主要考慮:
(1)密度(比重):ρ=P/V,單位:克/立方厘米或噸/立方米,式中P為重量,V為體積。在實(shí)際應(yīng)用中,除了根據(jù)密度計(jì)算金屬零件的重量外,很重要的一點(diǎn)是考慮金屬的比強(qiáng)度(強(qiáng)度σb與密度ρ之比)來(lái)幫助選材,以及與無(wú)損檢測(cè)相關(guān)的聲學(xué)檢測(cè)中的聲阻抗(密度ρ與聲速C的乘積)和射線檢測(cè)中密度不同的物質(zhì)對(duì)射線能量有不同的吸收能力等等。
(2)熔點(diǎn):金屬由固態(tài)轉(zhuǎn)變成液態(tài)時(shí)的溫度,對(duì)金屬材料的熔煉、熱加工有直接影響,并與材料的高溫性能有很大關(guān)系。
(3)熱膨脹性:隨著溫度變化,材料的體積也發(fā)生變化(膨脹或收縮)的現(xiàn)象稱(chēng)為熱膨脹,多用線膨脹系數(shù)衡量,亦即溫度變化1℃時(shí),材料長(zhǎng)度的增減量與其0℃時(shí)的長(zhǎng)度之比。熱膨脹性與材料的比熱有關(guān)。在實(shí)際應(yīng)用中還要考慮比容(材料受溫度等外界影響時(shí),單位重量的材料其容積的增減,即容積與質(zhì)量之比),特別是對(duì)于在高溫環(huán)境下工作,或者在冷、熱交替環(huán)境中工作的金屬零件,須考慮其膨脹性能的影響。
(4)磁性:能吸引鐵磁性物體的性質(zhì)即為磁性,它反映在導(dǎo)磁率、磁滯損耗、剩余磁感應(yīng)強(qiáng)度、矯頑磁力等參數(shù)上,從而可以把金屬材料分成順磁與逆磁、軟磁與硬磁材料。
(5)電學(xué)性能:主要考慮其電導(dǎo)率,在電磁無(wú)損檢測(cè)中對(duì)其電阻率和渦流損耗等都有影響。
Vol.4
工藝性能
金屬對(duì)各種加工工藝方法所表現(xiàn)出來(lái)的適應(yīng)性稱(chēng)為工藝性能,主要有以下四個(gè)方面:
(1)切削加工性能:反映用切削工具(例如車(chē)削、銑削、刨削、磨削等)對(duì)金屬材料進(jìn)行切削加工的難易程度。
(2)可鍛性:反映金屬材料在壓力加工過(guò)程中成型的難易程度,例如將材料加熱到特定溫度時(shí)其塑性的高低(表現(xiàn)為塑性變形抗力的大?。?,允許熱壓力加工的溫度范圍大小,熱脹冷縮特性以及與顯微組織、機(jī)械性能有關(guān)的臨界變形的界限、熱變形時(shí)金屬的流動(dòng)性、導(dǎo)熱性能等。
(3)可鑄性:反映金屬材料熔化澆鑄成為鑄件的難易程度,表現(xiàn)為熔化狀態(tài)時(shí)的流動(dòng)性、吸氣性、氧化性、熔點(diǎn),鑄件顯微組織的均勻性、致密性,以及冷縮率等。
(4)可焊性:反映金屬材料在局部快速加熱,使結(jié)合部位迅速熔化或半熔化(需加壓),從而使結(jié)合部位牢固地結(jié)合在一起而成為整體的難易程度,表現(xiàn)為熔點(diǎn)、熔化時(shí)的吸氣性、氧化性、導(dǎo)熱性、熱脹冷縮特性、塑性以及與接縫部位和附近用材顯微組織的相關(guān)性、對(duì)機(jī)械性能的影響等。
產(chǎn)品展示
產(chǎn)品展示